On the geodetic and the hull numbers in strong product graphs

نویسندگان

  • José Cáceres
  • M. Carmen Hernando
  • Mercè Mora
  • Ignacio M. Pelayo
  • María Luz Puertas
چکیده

A set S of vertices of a connected graph G is convex, if for any pair of vertices u, v ∈ S , every shortest path joining u and v is contained in S . The convex hull CH(S ) of a set of vertices S is defined as the smallest convex set in G containing S . The set S is geodetic, if every vertex of G lies on some shortest path joining two vertices in S, and it is said to be a hull set if its convex hull is V(G). The geodetic and the hull numbers of G are the cardinality of a minimum geodetic and a minimum hull set, respectively. In this work, we investigate the behavior of both geodetic and hull sets with respect to the strong product operation for graphs. We also stablish some bounds for the geodetic number and the hull number and obtain the exact value of these parameters for a number of strong product graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodetic and hull numbers of strong products of graphs

Classic convexity can be extended to graphs in a natural way by considering shortest paths, also called geodesics: a set S of vertices of a graph is convex if it contains all the vertices lying in some geodesic with endpoints in S and the convex hull of a set S of vertices is the minimum convex set containing S. Farber and Jamison [9] characterized the graphs such that every convex set is the c...

متن کامل

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

متن کامل

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2010